更多>>精华博文推荐
更多>>人气最旺专家

刘军魁

领域:东北新闻网

介绍:这次研修班的培训,我更意识到教育不应该是空中楼阁,它应该是立足于生活的。...

宋瑶

领域:新浪中医

介绍:在具体工作中,个人利益永远服从于党和人民的利益,努力为群众排忧解难,使自己的一言一行都要从先进党员的良好形象出发。利来国际最老牌手机板,利来国际最老牌手机板,利来国际最老牌手机板,利来国际最老牌手机板,利来国际最老牌手机板,利来国际最老牌手机板

利来天用户
本站新公告利来国际最老牌手机板,利来国际最老牌手机板,利来国际最老牌手机板,利来国际最老牌手机板,利来国际最老牌手机板,利来国际最老牌手机板
ooy | 2019-01-22 | 阅读(852) | 评论(528)
一、质量安全“十严禁”红线(九)严禁现浇梁满堂支架、连续梁挂篮施工不进行专项设计,不按设计要求施工。【阅读全文】
利来国际最老牌手机板,利来国际最老牌手机板,利来国际最老牌手机板,利来国际最老牌手机板,利来国际最老牌手机板,利来国际最老牌手机板
hre | 2019-01-22 | 阅读(902) | 评论(954)
可以说,尽管西方在此次俄乌摩擦中,对俄罗斯“调门”较低,但并不意味着西方与俄罗斯的关系出现实质性变化。【阅读全文】
2dv | 2019-01-22 | 阅读(248) | 评论(189)
山田敏正对本报记者说,“我们非常理解冲绳民众,支持冲绳民众阻止在边野古建设新的美军基地的活动。【阅读全文】
k0x | 2019-01-22 | 阅读(340) | 评论(377)
3、落款署名,日期。【阅读全文】
ujz | 2019-01-22 | 阅读(592) | 评论(323)
PAGE第3课时 三角形中的几何计算课后篇巩固探究A组1.在△ABC中,AB=2,BC=5,△ABC的面积为4,则cos∠ABC等于(  )                ±C.-D.±解析由S=AB·BC·sin∠ABC,得4=×2×5sin∠ABC,解得sin∠ABC=,从而cos∠ABC=±.答案B2.某市在“旧城改造”工程中计划在如图所示的一块三角形空地上种植草皮以美化环境.已知这种草皮的价格为a元/m2,则购买这种草皮需要(  )元元解析由已知可求得草皮的面积为S=×20×30sin150°=150(m2),则购买草皮的费用为150a元答案C3.在△ABC中,a,b,c分别为角A,B,C的对边,若2b=a+c,B=30°,△ABC的面积为,则b等于(  )+++3解析由acsin30°=,得ac=6.由余弦定理,得b2=a2+c2-2accos30°=(a+c)2-2ac-3ac=4b2-12-63答案A4.在△ABC中,若AC=3BC,C=π6,S△ABC=3sin2A,则S△ABC=(解析因为AB2=BC2+3BC2-2×BC×3BC×32=BC2,所以A=C=π6,所以S△ABC=3sin2A=答案A5.若△ABC的周长等于20,面积是103,B=60°,则边AC的长是(  )解析在△ABC中,设A,B,C的对边分别为a,b,c,已知B=60°,由题意,得cos60°=a2+c答案C6.已知△ABC的三边分别为a,b,c,且面积S=a2+b2解析在△ABC中,S△ABC=a2而S△ABC=absinC,∴a2+b由余弦定理,得c2=a2+b2-2abcosC,∴cosC=sinC,∴C=45°.答案45°7.已知三角形的面积为,其外接圆面积为π,则这个三角形的三边之积等于     .解析设三角形的外接圆半径为R,则由πR2=π,得R=1.由S=absinC=abc4R=abc答案18.在△ABC中,角A,B,C所对的边分别为a,b,c,求证:ab-b证明由余弦定理的推论得cosB=a2cosA=b2右边=ca=2a2故原式得证.9.如图,在△ABC中,BC=5,AC=4,cos∠CAD=3132,且AD=BD,求△ABC的面积解设CD=x,则AD=BD=5-x.在△CAD中,由余弦定理,得cos∠CAD=42+(5∴CD=1,AD=BD=4.在△CAD中,由正弦定理,得ADsin则sinC=ADCD·1-∴S△ABC=AC·BC·sinC=×4×5×387=154710.导学号04994016若△ABC的三边长分别为a,b,c,面积为S,且S=c2-(a-b)2,a+b=2,求面积S的最大值.解S=c2-(a-b)2=c2-a2-b2+2ab=2ab-(a2+b2-c2).由余弦定理,得a2+b2-c2=2abcosC,∴c2-(a-b)2=2ab(1-cosC),即S=2ab(1-cosC).∵S=absinC,∴sinC=4(1-cosC).又sin2C+cos2C=1,∴17cos2C-32cosC+解得cosC=1517或cosC=1(舍去)∴sinC=817∴S=absinC=417a(2-a)=-417(a-1)2+∵a+b=2,∴0a2,∴当a=1,b=1时,Smax=417B组1.在钝角三角形ABC中,内角A,B,C所对的边分别为a,b,c,已知a=7,c=5,sinC=5314,则△ABC的面积等于(解析在钝角三角形ABC中,∵a=7,c=5,sinC=5314,∴AC,C为锐角,且cosC=1-sin2C=1114.由c2=a2+b2-2abcosC,得b2-11b+24=0,解得b=3或b=8.当b=8时,角B是钝角,cosB=a2+c2-b22ac=49+25-642答案C2.设△ABC的内角A,B,C所对的边分别为a,b,c,且3acosC=4csinA,若△ABC的面积S=10,b=4,则a的值为(  )解析由3acosC=4csinA,得asinA=4c3cosC.又由正弦定理asinA=csinC,得csinC=4c3cosC,∴tanC=,∴答案B3.在△ABC中,ab=60,S△ABC=153,△ABC的外接圆半径为3,则边c的长为    .解析∵S△AB【阅读全文】
qe1 | 2019-01-21 | 阅读(362) | 评论(240)
O-2(H2O、OH-等)、-1(H2O2、Na2O2)、0(O2)。【阅读全文】
gtl | 2019-01-21 | 阅读(952) | 评论(435)
这档高风险高配置的实验性节目,在吸引关注的同时,也深陷爆款的期待之中。【阅读全文】
kwl | 2019-01-21 | 阅读(587) | 评论(132)
④优势道对剩余油的影响疏松的砂岩油藏经过长期注水冲刷后,极易形成次生高渗透带,一旦形成就会极易通过注示踪剂盼181;应用试井资料、直接或间接应用测井资料识别等方法识别【1蛇2】;根据物理模拟后,选取的实验参数利用灰色理论来识别【23】;根据选取动静态参数采取模糊综合判别来识别【241;从井组出发,利用综合判【阅读全文】
利来国际最老牌手机板,利来国际最老牌手机板,利来国际最老牌手机板,利来国际最老牌手机板,利来国际最老牌手机板,利来国际最老牌手机板
0uh | 2019-01-21 | 阅读(848) | 评论(874)
客人也非常满意。【阅读全文】
dqk | 2019-01-20 | 阅读(536) | 评论(240)
峰会期间,安全狗作为峰会的信息化支撑与技术保障单位之一,派驻了专业技术人员,并依托自身强大的云安全产品体系,和专业的技术能力与职业精神,全程护航峰会的举行,圆满完成了此次峰会的网络安全保障工作!【阅读全文】
1cs | 2019-01-20 | 阅读(89) | 评论(151)
我非常珍惜这难得的学习机会,在未的三年中我将努力学习,掌握更多的知识,不断提高自己的科学化水平,为今后的工作打下更加坚实的基础。【阅读全文】
n9d | 2019-01-20 | 阅读(142) | 评论(284)
其实这一过程就是“长江后浪推前浪,前浪死在沙滩上”、“站在巨人的肩膀上更进一步”。【阅读全文】
gw9 | 2019-01-20 | 阅读(60) | 评论(214)
转眼我到XX区人民法院工作已近一年了,这一年是我人生旅途中的重要一程,期间在领导的培养帮助、同志们的关心支持下我逐步适应了书记员的工作,完成了当一名国家务员的角色转变。【阅读全文】
r00 | 2019-01-19 | 阅读(892) | 评论(439)
 最大值与最小值学习目标重点难点1.知道函数的最大值与最小值的概念.2.能够区分函数的极值与最值.3.会用导数求闭区间上不超过三次的多项式函数的最大值、最小值.重点:函数在闭区间上的最值的求解.难点:与函数最值有关的参数问题.1.最大值与最小值(1)如果在函数定义域I内存在x0,使得对任意的x∈I,总有______________,则称f(x0)为函数在定义域上的最大值.最大值是相对函数定义域整体而言的,如果存在最大值,那么最大值________.(2)如果在函数定义域I内存在x0,使得对任意的x∈I,总有____________,则称f(x0)为函数在定义域上的最小值.最小值是相对函数定义域整体而言的,如果存在最小值,那么最小值________.2.求f(x)在区间[a,b]上的最大值与最小值的步骤(1)求f(x)在区间(a,b)上的________;(2)将第(1)步中求得的________与______,______比较,得到f(x)在区间[a,b]上的最大值与最小值.预习交流1做一做:函数y=x-sinx,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))的最大值是______.预习交流2做一做:函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为______.预习交流3(1)函数的极值与最值有何区别与联系?(2)如果函数f(x)在开区间(a,b)上的图象是连续不断的曲线,那么它在(a,b)上是否一定有最值?若f(x)在闭区间[a,b]上的图象不连续,那么它在[a,b]上是否一定有最值?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)f(x)≤f(x0) 惟一 (2)f(x)≥f(x0) 惟一2.(1)极值 (2)极值 f(a) f(b)预习交流1:提示:∵y′=1-cosx≥0,∴y=x-sinx在eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))上是增函数,∴ymax=π.预习交流2:提示:∵f′(x)=3x2-3a=3(x2-af(x)在(0,1)内有最小值,∴方程x2-a=0有一根在(0,1)内,即x=eq\r(a)在(0,1)内,∴0<eq\r(a)<1,0<a<1.预习交流3:提示:(1)①函数的极值是表示函数在某一点附近的变化情况,是在局部上对函数值的比较,具有相对性;而函数的最值则是表示函数在整个定义区间上的情况,是对整个区间上的函数值的比较,具有绝对性.②函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有惟一性;而极大值和极小值可能多于一个,也可能没有,例如:常函数就没有极大值,也没有极小值.③极值只能在函数的定义域内部取得,而最值可以在区间的端点取得.有极值的不一定有最值,有最值的不一定有极值,极值有可能成为最值,最值只要不在端点处则一定是极值.(2)一般地,若函数f(x)的图象是一条连续不断的曲线,那么f(x)在闭区间[a,b]上必有最大值和最小值.这里给定的区间必须是闭区间,如果是开区间,那么尽管函数是连续函数,那么它也不一定有最大值和最小值.一、求函数在闭区间上的最值求下列函数的最值:(1)f(x)=-x3+3x,x∈[-eq\r(3),eq\r(3)];(2)f(x)=sin2x-x,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(π,2),\f(π,2))).思路分析:按照求函数最值的方法与步骤,通过列表进行计算与求解.1.函数f(x)=x3-2x2+1在区间[-1,2]上的最大值与最小值分别是__________.2.求函数y=5-36x+3x2+4x3在区间[-2,2]上的最大值与最小值.1.求函数在闭区间上的最值时,一般是先找出该区间上使导数为零的点,无需判断出是极大值还是极小值,只需将这些点对应的函数值与端点处的函数值比较,其中最大的是最大值,最小的是最小值.2.求函数在闭区间上的最值时,需要对各个极值与端点函数值进行比较,有时需要作差、作商,有时还要善于估算,甚至有时需要进行分类讨论.二、与最值有关的参数问题的求解已知当a>0时,函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.思路分析:先求出函数f(x)在[-1,2]上的极值点,然后与两个端点的函数值进行比较,建立关于a,b的方程组,从而求出a,b的值.若函数f(x)=-x3+3x2+9x+a在区间[-2,2]上的最大值为20,求它在该区间上的最小值.【阅读全文】
sia | 2019-01-19 | 阅读(65) | 评论(395)
第二条本网站充分尊重原创作者的著作权和其他知识产权(若有)。【阅读全文】
共5页

友情链接,当前时间:2019-01-22

利来国际w66.com 利来娱乐账户 利来国际备用 利来国际旗舰厅 利来国际是多少
利来国际w66娱乐平台 w66.cm利来国际 利来国际最给利的老牌 利来国际旗舰版
利来娱乐w66 利来国际娱乐官方 利来娱乐网址 w66利来娱乐公司 利来国际娱乐
w66利来国际老牌 利来国际娱乐 w66.com 利来国际w66 利来国际最给利的老牌
阳新县| 霍林郭勒市| 伊宁市| 广昌县| 邹城市| 怀远县| 永寿县| 澄迈县| 沙雅县| 隆德县| 仁化县| 余干县| 綦江县| 乌恰县| 曲靖市| 建德市| 衡阳县| 宜宾县| 于田县| 桓台县| 基隆市| 商城县| 肥西县| 洱源县| 来凤县| 女性| 衡南县| 庆阳市| 如皋市| 通山县| 泰和县| 闻喜县| 正蓝旗| 宜兴市| 柳江县| 抚宁县| 贵南县| 华池县| 怀来县| 新郑市| 灵台县| http://m.62854197.cn http://m.92044274.cn http://m.30962250.cn http://m.11687450.cn http://m.38837001.cn http://m.61601327.cn